Robust Fundamental Matrix Estimation with Accurate Outlier Detection

نویسندگان

  • Jing-Fu Huang
  • Shang-Hong Lai
  • Chia-Ming Cheng
چکیده

The estimation of fundamental matrix from two-view images has been an important topic of research in 3D computer vision. In this paper, we present an improved robust algorithm for fundamental matrix estimation via modification of the RANSAC algorithm. The proposed algorithm is based on constructing a voting array for all the point correspondence pairs to record the consistency votes for each point correspondence from a number of the fundamental matrix estimations determined from randomly selected subsets of correspondence pairs to facilitate the identification of outliers. The boundary between the inliers and outliers in the sorted voting array are determined through a hypothesis testing procedure. With this strategy, we can accurately determine the outliers from all pairs of point correspondences, thus leading to accurate and robust fundamental matrix estimation under noisy feature correspondences. Through experimental comparison with previous methods on simulated and real image data, we show the proposed algorithm in general outperforms other best-performed methods to date.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous robust estimation of multi-response surfaces in the presence of outliers

A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...

متن کامل

Robust Feature Tracking in Underwater Video Sequences

| This paper proposes a robust feature tracker based on an eecient outlier rejection scheme, suitable for feature tracking in subsea video sequences. We extend the Shi-Tomasi-Kanade scheme by introducing a technique for rejecting spurious features. We employ a simple and ee-cient outlier rejection rule, called X84, and prove that its theoretical assumptions are satissed in the feature tracking ...

متن کامل

Oceans'98 Ieee/oes Conference Robust Feature Tracking in Underwater Video Sequences

| This paper proposes a robust feature tracker based on an eecient outlier rejection scheme, suitable for feature tracking in subsea video sequences. We extend the Shi-Tomasi-Kanade scheme by introducing a technique for rejecting spurious features. We employ a simple and ee-cient outlier rejection rule, called X84, and prove that its theoretical assumptions are satissed in the feature tracking ...

متن کامل

Application of Outlier Robust Nonlinear Mixed Effect Estimation in Examining the Effect of Phenylephrine in Rat Corpus Cavernosum

Ignoring two main characteristics of the concentration-response data, correlation between observations and presence of outliers, may lead to misleading results. Therefore the special method should be considered. In this paper in to examine the effect of phenylephrine in rat Corpus cavernosum, outlier robust nonlinear mixed estimation is used. in this study, eight different doses of phenylephrin...

متن کامل

Multivariate Outlier Detection and Robust Covariance Matrix Estimation

In this article, we present a simple multivariate outlier-detection procedure and a robust estimator for the covariance matrix, based on the use of information obtained from projections onto the directions that maximize and minimize the kurtosis coefŽ cient of the projected data. The properties of this estimator (computational cost, bias) are analyzed and compared with those of other robust est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Inf. Sci. Eng.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2007